p-group, metabelian, nilpotent (class 4), monomial
Aliases: C22.4D16, C23.48D8, C16⋊3C4⋊6C2, (C2×C8).73D4, (C2×C4).41D8, C2.8(C2×D16), C2.D16⋊7C2, C22⋊C16⋊6C2, C8⋊7D4.5C2, C8.69(C4○D4), (C2×D8).9C22, (C2×C16).10C22, (C2×C8).532C23, C22.118(C2×D8), (C22×C4).352D4, C2.D8.17C22, C2.17(Q32⋊C2), C4.14(C8.C22), (C22×C8).129C22, C4.39(C22.D4), C2.12(C22.D8), (C2×C2.D8)⋊16C2, (C2×C4).800(C2×D4), SmallGroup(128,964)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.D16
G = < a,b,c,d | a2=b2=c16=d2=1, cac-1=dad=ab=ba, bc=cb, bd=db, dcd=bc-1 >
Subgroups: 212 in 75 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C22×C4, C2×D4, D4⋊C4, C2.D8, C2.D8, C2.D8, C2×C16, C2×C4⋊C4, C4⋊D4, C22×C8, C2×D8, C22⋊C16, C2.D16, C16⋊3C4, C2×C2.D8, C8⋊7D4, C22.D16
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, D16, C22.D4, C2×D8, C8.C22, C22.D8, C2×D16, Q32⋊C2, C22.D16
Character table of C22.D16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 16 | 2 | 2 | 4 | 8 | 8 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | orthogonal lifted from D16 |
ρ16 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | orthogonal lifted from D16 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | orthogonal lifted from D16 |
ρ21 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ22 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | orthogonal lifted from D16 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 0 | 2i | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 2i | 0 | -2i | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | -2i | 0 | 2i | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | -2i | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
(1 38)(2 30)(3 40)(4 32)(5 42)(6 18)(7 44)(8 20)(9 46)(10 22)(11 48)(12 24)(13 34)(14 26)(15 36)(16 28)(17 64)(19 50)(21 52)(23 54)(25 56)(27 58)(29 60)(31 62)(33 55)(35 57)(37 59)(39 61)(41 63)(43 49)(45 51)(47 53)
(1 60)(2 61)(3 62)(4 63)(5 64)(6 49)(7 50)(8 51)(9 52)(10 53)(11 54)(12 55)(13 56)(14 57)(15 58)(16 59)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 33)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 41)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 59)(3 15)(4 57)(5 13)(6 55)(7 11)(8 53)(10 51)(12 49)(14 63)(16 61)(17 34)(18 24)(19 48)(20 22)(21 46)(23 44)(25 42)(26 32)(27 40)(28 30)(29 38)(31 36)(33 43)(35 41)(37 39)(45 47)(50 54)(56 64)(58 62)
G:=sub<Sym(64)| (1,38)(2,30)(3,40)(4,32)(5,42)(6,18)(7,44)(8,20)(9,46)(10,22)(11,48)(12,24)(13,34)(14,26)(15,36)(16,28)(17,64)(19,50)(21,52)(23,54)(25,56)(27,58)(29,60)(31,62)(33,55)(35,57)(37,59)(39,61)(41,63)(43,49)(45,51)(47,53), (1,60)(2,61)(3,62)(4,63)(5,64)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,41), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,59)(3,15)(4,57)(5,13)(6,55)(7,11)(8,53)(10,51)(12,49)(14,63)(16,61)(17,34)(18,24)(19,48)(20,22)(21,46)(23,44)(25,42)(26,32)(27,40)(28,30)(29,38)(31,36)(33,43)(35,41)(37,39)(45,47)(50,54)(56,64)(58,62)>;
G:=Group( (1,38)(2,30)(3,40)(4,32)(5,42)(6,18)(7,44)(8,20)(9,46)(10,22)(11,48)(12,24)(13,34)(14,26)(15,36)(16,28)(17,64)(19,50)(21,52)(23,54)(25,56)(27,58)(29,60)(31,62)(33,55)(35,57)(37,59)(39,61)(41,63)(43,49)(45,51)(47,53), (1,60)(2,61)(3,62)(4,63)(5,64)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,41), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,59)(3,15)(4,57)(5,13)(6,55)(7,11)(8,53)(10,51)(12,49)(14,63)(16,61)(17,34)(18,24)(19,48)(20,22)(21,46)(23,44)(25,42)(26,32)(27,40)(28,30)(29,38)(31,36)(33,43)(35,41)(37,39)(45,47)(50,54)(56,64)(58,62) );
G=PermutationGroup([[(1,38),(2,30),(3,40),(4,32),(5,42),(6,18),(7,44),(8,20),(9,46),(10,22),(11,48),(12,24),(13,34),(14,26),(15,36),(16,28),(17,64),(19,50),(21,52),(23,54),(25,56),(27,58),(29,60),(31,62),(33,55),(35,57),(37,59),(39,61),(41,63),(43,49),(45,51),(47,53)], [(1,60),(2,61),(3,62),(4,63),(5,64),(6,49),(7,50),(8,51),(9,52),(10,53),(11,54),(12,55),(13,56),(14,57),(15,58),(16,59),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,33),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,41)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,59),(3,15),(4,57),(5,13),(6,55),(7,11),(8,53),(10,51),(12,49),(14,63),(16,61),(17,34),(18,24),(19,48),(20,22),(21,46),(23,44),(25,42),(26,32),(27,40),(28,30),(29,38),(31,36),(33,43),(35,41),(37,39),(45,47),(50,54),(56,64),(58,62)]])
Matrix representation of C22.D16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 15 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
13 | 11 | 0 | 0 |
6 | 13 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 4 | 4 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,16,0,0,0,15,1],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[13,6,0,0,11,13,0,0,0,0,13,4,0,0,0,4],[1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,16] >;
C22.D16 in GAP, Magma, Sage, TeX
C_2^2.D_{16}
% in TeX
G:=Group("C2^2.D16");
// GroupNames label
G:=SmallGroup(128,964);
// by ID
G=gap.SmallGroup(128,964);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,422,58,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^16=d^2=1,c*a*c^-1=d*a*d=a*b=b*a,b*c=c*b,b*d=d*b,d*c*d=b*c^-1>;
// generators/relations
Export